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Abstract
Background/Aims: Cells adapt to chronic extracellular hypotonicity by altering metabolism. 
Corresponding effects of sustained hypotonic exposure at the whole-person level remain 
to be confirmed and characterized in clinical and population-based studies. This analysis 
aimed to 1) describe changes in urine and serum metabolomic profiles associated with four 
weeks of sustained >+1 L/d drinking water in healthy, normal weight, young men, 2) identify 
metabolic pathways potentially impacted by chronic hypotonicity, and 3) explore if effects of 
chronic hypotonicity differ by type of specimen and/or acute hydration condition. Materials: 
Untargeted metabolomic assays were completed for specimen stored from Week 1 and Week 
6 of the Adapt Study for four men (20-25 years) who changed hydration classification during 
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that period. Each week, first-morning urine was collected after overnight food and water 
restriction, and urine (t+60 min) and serum (t+90 min) were collected after a 750 mL bolus 
of drinking water. Metaboanalyst 5.0 was used to compare metabolomic profiles. Results: 
In association with four weeks of >+1 L/d drinking water, urine osmolality decreased below 
800 mOsm/kg H2O and saliva osmolality decreased below 100 mOsm/kg H2O. Between Week 
1 and Week 6, 325 of 562 metabolic features in serum changed by 2-fold or more relative 
to creatinine. Based on hypergeometric test p-value <0.05 or Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway impact factor >0.2, the sustained >+1 L/d of drinking water 
was associated with concurrent changes in carbohydrate, protein, lipid, and micronutrient 
metabolism, a metabolomic pattern of carbohydrate oxidation via the tricarboxylic acid (TCA) 
cycle, instead of glycolysis to lactate, and a reduction of chronic disease risk factors in Week 
6. Similar metabolic pathways appeared potentially impacted in urine, but the directions of 
impact differed by specimen type. Conclusion:  In healthy, normal weight, young men with 
initial total water intake below 2 L/d, sustained >+1 L/d drinking water was associated with 
profound changes in serum and urine metabolomic profile, which suggested normalization of 
an aestivation-like metabolic pattern and a switch away from a Warburg-like pattern. Further 
research is warranted to pursue whole-body effects of chronic hypotonicity that reflect cell-
level effects and potential beneficial effects of drinking water on chronic disease risk.

Introduction

Whole-body hydration translates to cell hydration and vice versa. Drinking water equili-
brates throughout the body water pool within two hours [1]. Cell hydration, which is under 
tight homeostatic control, determines if body water is retained, lost, or produced by metabo-
lism [2-10]. Although cell hydration is well known to strongly modify cell metabolism [4, 5, 
11], corresponding relationships at the whole-body level are less well understood. Causal 
effects of chronic whole-body hydration on metabolic syndrome-related disorders and mor-
tality are hypothesized based on cell hydration effects [12-16], but remain to be confirmed.

Cell hydration and metabolism
Cell hydration is perturbed by manifold osmotic stressors because cells’ plasma mem-

branes are semipermeable to water and solutes. Cells respond to any deviation of the osmot-
ic equilibrium between the intracellular and extracellular space with an obligated flux of wa-
ter towards the compartment with the higher osmotic activity. The resulting alterations of 
cell volume, tension of the plasma and organellar membranes, ionic strength, and molecule 
concentrations elicit mechanotransduction and osmotic sensing which affect a wide range of 
cell processes and functions, including gene expression [17, 18], cell proliferation, transport, 
metabolism, autophagy, redox-balance, fluid homeostasis, solute uptake, cell motility and 
migration, immune function, and programmed cell death [11, 12, 19-34]. Sophisticated regu-
latory mechanisms precisely adjust cell volume, hydration, and metabolism [11, 29, 35-38].

Hypotonic swelling of hepatocytes promotes anabolic metabolism, including protein 
and glycogen synthesis. The hypoosmotic inhibition of proteolysis involves integrins as os-
mosensors and downstream signaling mediated by focal adhesion kinase, the tyrosine ki-
nase c-Src, and the epidermal growth factor receptor and mitogen-activated protein kinases 
[35, 39, 40].

Hypertonic shrinkage favors catabolic metabolism. Chronic hyperosmotic stress causes 
cells to adapt in ways “so numerous as to suggest a major alteration in the state of cells” [15]. 
Adaptive responses favor intracellular accumulation of low molecular weight osmolytes, 
such as free amino acids, urea, polyols, and methylamines [41]. Adaptive responses are co-
ordinated by tonicity-responsive-enhancer-binding-protein (TonEBP)/nuclear factor of ac-
tivated T cells 5 (NFAT5)[15, 42-47]. Hyperosmotic phase separations mediate widespread 
cellular effects, including regulation of transcription [15, 48, 49]. Adapted metabolism re-
mains altered for days after correction of extracellular tonicity [11, 50] and primes cells to 
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respond differently to acute hypoosmotic shock. Cells that have accumulated osmolytes fol-
lowing chronic hyperosmolality release excess osmolytes in response to acute hypoosmotic 
shock [31].

Hypertonicity, cell metabolism and chronic disease risk
Many cellular or subcellular compensations for chronic extracellular hypertonicity are 

recognized risk factors for chronic disorders. As shown in various cell types, tissues, organs, 
and species, effects of prolonged hypertonicity include increased protein breakdown [9, 51], 
catabolism of branched chain amino acids (BCAA; i.e. valine, leucine and isoleucine) [52], 
insulin resistance [53-58], sorbitol production [11, 15, 31, 59], serum and glucocorticoid 
inducible kinase (SGK1) expression [14], increased intracellular accumulation of serine [60, 
61], secretion of pro-inflammatory cytokines, including IL-6 and TNF-alpha, and T-cell pro-
liferation [62-64], viral replication [65], as well as vascular and tissue calcification [66]. Hy-
pertonicity decreases flux through the pentose phosphate pathway [67], glycine oxidation 
[68], and oxidative phosphorylation efficiency [69]. It alters the glutamine-glutamate ratio, 
upregulates enzymes of the ornithine-urea cycle [70], and generates reactive oxygen species 
that increase oxidative stress [71], DNA damage [26], and programmed cell death [72-76].

Drought-related aestivation switches metabolism to suppress ATP-expensive pathways, 
including protein synthesis, and accumulate organic osmolytes of low-molecular weight, in-
cluding urea, at the expense of muscle protein breakdown [4, 5, 7, 9, 51].

As each response described above predicts increased risk of chronic disease incidence 
and/or progression [14, 77-88], it is reasonable to hypothesize that the combined pattern 
of responses may be associated with chronic disease risk. The metabolomic signature of 
chronic hypertonicity may be associated with the metabolomic signatures of aging [89], 
obesity, insulin resistance, high blood pressure, dyslipidemia [87, 90], Alzheimer’s disease 
[91], coronary artery disease [85] and colorectal cancer [92]. Chronic diseases are associ-
ated with a Warburg type of metabolic pattern [93], which, like the aestivation pattern, is 
characterized by increased protein breakdown and aerobic glycolysis as opposed to oxida-
tive phosphorylation.

Gaps in knowledge about effects of whole-body hydration
Despite experiments demonstrating that incubation of cells in a hypotonic milieu alters 

cell metabolism, it is unknown if a corresponding chronic hypotonic exposure at the whole-
body level changes metabolism. Clinical studies in healthy individuals have tested relatively 
short-term exposures, which do not generalize to free-living conditions of daily life, such as 
intravenous or desmopressin-induced hypoosmolality vs. hyperosmolality sustained over 
17 hours [94, 95]. Given physiological homeostatic mechanisms that excrete excess body 
water and mitigate against plasma hypotonicity, it is difficult to conceive of a chronic hypo-
tonic exposure at the whole-body level that exactly parallels long-term incubation of cells in 
hypotonic media. Regular consumption of hypotonic water might only intermittently dilute 
plasma and swell cells.

The Adapt Study tested effects of four weeks of higher intake (>+1 L/d above baseline) 
of plain drinking water in healthy young men [96, 97]. Weekly fasting blood tests showed 
that the sustained hypotonic exposure was associated with only a small, 2 mOsm/kg H2O, 
mean decrease in serum osmolality. The mean urine osmolality was, nevertheless, halved 
by the exposure, suggesting that the transient and/or minimal hemodilution was enough to 
swell osmoreceptor cells in the hypothalamus and suppress anti-diuretic hormone (ADH) re-
lease and urine concentrating activity. In association with the sustained higher water intake, 
the Adapt Study observed significant decreases in serum insulin, serum homeostasis model 
assessment index of insulin resistance (HOMA-IR), saliva cortisol, and urine arginine and 
glutamic acid [96, 97]. Though the results signal potential for an array of metabolic changes, 
prior analyses did not check for a broad array of metabolic effects [96, 97].
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Beyond the problem of how to operationalize chronic hypotonicity as an exposure in 
clinical studies, it also remains to be determined if metabolic effects of chronic hypotonicity 
can be detected in urine or serum, and under what conditions. While osmotic stress effects 
are reported in cells from many body tissues, including the intestine [98], kidney [99], brain 
[100], liver [101], blood [102], vascular endothelium [103], fibroblasts [104], and muscle 
[105], the effects may be tissue-specific and depend on the presence of particular conditions 
or substrate [41, 104, 106]. Metabolomic profiles vary by specimen type [107].

To address gaps in knowledge about the effects of chronic whole-body hydration on me-
tabolism, the present analysis revisited Adapt Study data to examine if chronic hypotonicity, 
induced by four weeks of sustained higher intake (>+1 L/d) of plain water, was associated 
with a major alteration in metabolism for the participants, akin to a switch in macronutri-
ent and energy metabolism, redox balance, and inflammation, detectable in serum or urine. 
The analysis described changes in the serum and urine metabolomic profiles associated 
with chronic hypotonicity, and metabolic pathways potentially impacted by the changes. The 
analysis considered if and how results depended on specimen type (urine vs. serum) and 
condition (after overnight food and fluid restriction vs. 60 min after drinking a bolus of 750 
mL water).

Materials and Methods

Study design & population
This secondary analysis used data from Week 1 and Week 6 of the Adapt study [96, 97]. Participation in 

the Adapt study involved a baseline period, followed by instruction to increase plain water intake by +1 L/d 
above baseline in Weeks 3 and 4 and increase plain water intake to +2 L/d above baseline in Weeks 5 and 6.

All Adapt study participants (n=5) were healthy men, aged 20–25 years, with sedentary physical activ-
ity level, normal weight status, and 3-day mean total water intake below 2 L/day before enrollment. They 
were non-smokers and infrequent consumers of caffeinated or alcoholic beverages (less than 2 servings/
week). For the duration of the study, the participants were instructed to record the type and estimated 
portion size of all foods and drinks consumed, using 7-day diet records, and consume the same foods and 
beverages, as consumed at baseline, on a weekly cycle. They were instructed to maintain their baseline level 
of physical activity and wear an armband to monitor their physical activity (SenseWear Pro 3, BodyMedia, 
Pittsburg, PA, USA). Total energy and macronutrient intake and physical activity did not change significantly 
over time [96].

The present analysis focused on study participants who changed hydration classification. Between 
Week 1 and Week 6, urine osmolality decreased below 800 mOsm/kg H2O, saliva osmolality decreased be-
low 100 mOsm/kg H2O, and serum osmolality remained below 295 mOsm/kg H2O. Urine osmolality of 800 
mOsm/kg H2O or higher is frequently interpreted as suboptimal hydration, underhydration, or index of 
hyperosmotic stress on cells (cell dehydration) [108-112]. Saliva osmolality above 100 mOsm/kg H2O ap-
proximately corresponds with a total body water (TBW) deficit greater than 1% [113, 114]. Serum osmolal-
ity of 295 mOsm/kg H2O or higher is recognized as elevated [115, 116].

The present analysis excluded one of the five Adapt study participants who did not meet all three 
hydration criteria in Week 6. Each of the remaining four participants transitioned from not meeting one or 
more hydration criteria in Week 1 to meeting all three criteria in Week 6.

Specimen collection & processing
In Week 1 and Week 6, the study participants came to the research clinic in the morning after overnight 

food and water restriction for specimen collection and clinical measures. At home, the study participants 
collected first-morning urine in a pre-labeled container. They arrived at the clinic with the first-morning 
sample in a cooler with an ice pack at approximately 8 am. Fasting body weight was measured in duplicate 
using a calibrated clinical scale (Scale-Tronix, Carol Stream, Illinois, USA) after the participants voided and 
removed shoes and outer clothing. TBW was estimated from body weight using the Watson and Hume equa-
tions [117, 118].
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The study participants collected unstimulated saliva by passively drooling through a straw after a few 
moments of not swallowing. Participants were next given 750 mL plain tap water to consume within ap-
proximately five to ten minutes. Urine was collected within 60 minutes after the water bolus. Blood was 
collected 90 minutes after the bolus into non-anticoagulated tubes.

Urine, saliva, and serum osmolality were determined in triplicate on fresh samples by freezing point 
depression osmometer (Advanced Instruments Model 3320, Norwood MA, USA). Freshly collected whole 
blood was used to determine the red blood cell (RBC) mean corpuscular volume (MCV) from manual he-
matocrit (HCT) and RBC concentration: MCV (fL) = HCT x 10/RBC concentration. The manual spun HCT (in 
%) was determined in triplicate and the RBC concentration (in millions/µL) was determined by the ADVIA 
120 hematology analyzer (Bayer Healthcare, Tarrytown, NY, USA) at Children’s Hospital Oakland Research 
Institute (CHORI) (Oakland, CA, USA).

RBC deformability was also determined on fresh whole blood at CHORI (Oakland, CA, USA) by ekta-
cytometry. Briefly, whole blood was suspended in a viscometer and exposed to shear stress in solutions 
ranging in osmolality from hypotonic to hypertonic by a NaCl gradient in polyvinylpyrrolidone (PVP) at a 
viscosity of 30 cP. On the hypotonic part of the range, the osmolality associated with minimal RBC deform-
ability was determined. On the hypertonic part of the range, the osmolality where RBC deformability is half 
of maximal deformability was determined [119].

Aliquots of first-morning urine, post-bolus urine, serum, plasma, and white blood cells (WBC) were 
stored frozen at -80°C. Stored WBC were sent to TruDiagnostic (Lexington KY, USA) for determination of the 
DunedinPACE index of aging [120].

Stored plasma was sent to the Victoria Hospital Kidney Clinical Research Unit, London ON, Canada, for 
determination of plasma copeptin by automated immunofluorescent assay. Serum creatinine (mg/dL) was 
determined by Quest Diagnostics (San Jose, CA, USA). The glomerular filtration rate was estimated using the 
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation [121].

The RBC K:Na ratio, a proxy reflecting Na-K pump activity, was determined at CHORI as described 
previously. Briefly, heparinized whole blood was centrifuged, RBC pellets were washed in choline, lysed and 
digested in OmniTrace 70% HNO3 (EMD Chemicals) overnight (60°C, 150–200 rpm orbital shaking), and 
thereafter diluted to 5% HNO3 with OmniTrace water (EMD Chemicals, Gibbstown, NJ, USA). The acid lysates 
were centrifuged (10 min at 3000 x g) and introduced into a Vista Pro inductively coupled plasma – atomic 
emission spectrometer (ICP-AES; Varian Inc., Palo Alto, CA, USA) as described previously [122]. The ICP-AES 
was calibrated using National Institute of Standards and Technology (NIST)-traceable elemental standards 
and validated using NIST-traceable 1577b bovine liver reference material (BLRM). Na and K were deter-
mined at 568.821 nm and 766.491 nm, respectively. The detection range was 0.05–50 ppm. The coefficient 
of variations (CV) for intra-assay and inter-assay precision for elements measured with the NIST reference 
material were routinely <10%. Cesium (50 ppm) was used for ionization suppression and yttrium (5 ppm) 
was used as an internal standard for all samples. All reagents and plastic ware were certified or routinely 
tested for trace metal work. Elemental content data was summarized using native software (ICP Expert; Var-
ian Inc.) and normalized to RBC volume determined by complete blood count (CBC).

Body water turnover was indexed using the 7-day deuterium elimination rate method. Once in each 
two-week study period, the 750 mL water bolus administered to the study participants contained 10 mL 
2H2O (99.9 atom%, Donated from the Western Human Nutrition Research Center, UC Davis, CA, USA). The 
deuterium enrichment (D/H) was determined by mass spectrometry for one urine or plasma sample col-
lected before each dose, one sample collected at least 90 min after each dose, and one sample collected 7 
days after each dose. The D/H measurement was made directly in urine, but water from plasma was partial-
ly purified before analysis by centrifugation (30 min at 3, 000 x g, Amicon ultra 15, 10 kDa, NMWL, Millipore, 
Billerica, MA, USA). The D/H was analyzed on a Micromass Isoprime DI coupled with an Aquaprep system 
(Isoprime Ltd, Cheadle Hulme, UK) using the H2-water equilibration method in the presence of hydrophobic 
platinum as the catalyst (Horita and Kendall 2004) as previously described [1]. The analyses were per-
formed at the Laboratoire de Géochimie des isotopes stables (Centre GEOTOP-UQAM, Montréal, Canada). 
The D/H was expressed in ppm versus V-SMOW (155.76 ppm): D/H (ppm) = [(D/H in delta V-SMOW/1, 
000) + 1] x 155.76. The half-life of D2O in the body (t ½ in days) was estimated to index the turnover of the 
body water pool as [ln 2]/-kr, where kr is the deuterium elimination rate (Δ ln (D/H, ppm)/days), the rate 
constant of D2O disappearance from the body water pool [1]. As the exact weight of the 10 mL 2H2O dose was 
not recorded, it was not possible to reliably estimate the TBW.
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Metabolomic analysis
Metabolomics analysis provides global assessment of low molecular weight metabolites, including 

sugars, lipids, steroids, vitamins, amino acids, fatty acids, organic acids, and small peptides, in biological 
samples, which reflect the downstream expression of genome, transcriptome, proteome, and phenotype of 
an organism, at a point in time, given exogenous factors, such as physical environment, time of day, and diet 
[107].

First-morning urine, post-bolus urine, and serum specimen were sent to the University of Califor-
nia Davis, West Coast Metabolomics Center (WCMC) for untargeted analysis of primary metabolism using 
validated automated liner exchange, cold injection system, gas chromatography with time-of-flight mass 
spectrometry (ALEX-CIS GCTOF MS). The WCMC uses 15-25 internal standards, a standardized protocol for 
removing noise from raw data, and a BinBase algorithm to match spectra with known compounds [123]. All 
specimen, first-morning urine, post-bolus urine, and serum from all time points, were analyzed in one batch. 
WCMC reported the peak height (mass-to-charge ratio, m/z) and peak retention times (rt; in seconds) for all 
features that were positively detected in at least 10% of the urine and serum samples. Known compounds 
were reported with their Kyoto Encyclopedia of Genes and Genomes (KEGG) ID.

Data analyses
MetaboAnalyst 5.0 software [124, 125] was used to normalize and analyze the metabolomic data. Fea-

ture peak heights from all three specimen types were normalized relative to creatinine (KEGG ID C00791, 
m/z/rt: 115/502599) to account for the known decreases in serum and urine osmolality between Week 
1 and Week 6 [96]. Serum creatinine did not change significantly between Week 1 and Week 6. To include 
report of the physiological conditions experienced without control for hemodilution, serum metabolomic 
data were also analyzed, normalized relative to the pooled Week 1 sample. For all MetaboAnalyst analyses, 
in addition to normalization, the data were log transformed, mean-centered, and divided by the standard 
deviation of each variable to facilitate comparison of features.

Specific Aim 1: Describe change in metabolomic profiles associated with induced chronic hydration
To check for evidence of a major alteration in metabolism, the serum and urine metabolomic profiles 

were considered in terms of the number and percent of metabolic features altered, significant change in 
the overall profile, and number of metabolic pathways altered. Given that serum is considered a reasonably 
good metabolic proxy for the entire organism [107], analyses focused on change in the serum metabolomic 
profile relative to creatinine to check for altered whole body metabolism. The same analyses were repeated 
for each specimen type.

Change in feature abundance was expressed in terms of fold change from Week 1 to Week 6. The fold 
change of all metabolic features studied was summarized in a plot of log fold change. The number and 
percent of features that changed by 2-fold or more in abundance for three or more study participants were 
determined.

Change in the overall metabolomic profile was visualized using heatmaps, Orthogonal Partial Least 
Squares Discriminant Analysis (OPLS-DA) 2-D score plots, and Principal Components Analysis (PCA) score 
plots. Each participant’s time point-specific metabolomic profile was represented as a column in a heatmap, 
point in OPLS-DA score plot, and point in PCA score plot. OPLS-DA is designed to distinguish within- and 
between-group variation, taking into account specified factors (time, in the present analysis) [126]. Statisti-
cally significant differences in metabolomic profile between Week 1 and Week 6 were defined in terms of 
non-overlapping 95% confidence regions on the OPLS-DA and PCA score plots [127]. PCA is an unsuper-
vised method for distinguishing class differences in data, without specifying class factors in advance. Both 
OPLS-DA and PCA were used because OPLS-DA results can be statistically unreliable without PCA cross-
validation, and PCA results can miss important factors [128, 129].

To check if multiple metabolic pathways were potentially impacted by the induced change in hydration 
between Week 1 and Week 6, KEGG IDs for known compounds that changed by 2-fold or more for at least 
three participants were uploaded to the Pathways module of MetaboAnalyst 5.0. Compounds that decreased 
were entered separately from compounds that increased to facilitate interpretation about the direction of 
potential change in the pathway. Using the Homo sapiens library as reference, the hypergeometric test was 
used to test if the specified group of compounds was overrepresented, i.e. occurred more frequently than 
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would be expected by chance. In addition to p-value and p-value adjusted for multiple testing using False 
Discovery Rate (FDR), the software reports an index of pathway impact, which is calculated by adding up the 
centrality and enrichment measures of each of the matched metabolites and then dividing by the sum of the 
measures of all metabolites in the pathway. The analysis highlighted pathways where a statistically signifi-
cant (raw p-value <0.05) number of intermediates were impacted or where the impacted intermediate(s) 
was central or important to the pathway (impact factor >0.20).

Specific Aim 2: Describe metabolic pathways potentially impacted by the induced change in hydration
Metabolic pathways identified as potentially impacted, based on the serum metabolomic results, were 

grouped by type of pathway and direction of change. Pathways were grouped by involvement in protein 
metabolism, carbohydrate metabolism, lipid metabolism, redox balance, or inflammation. The potential im-
pacts were summarized in relation to the TCA cycle.

To check for a switch in energy metabolism, we described coordinated changes in multiple pathways 
resulting in concurrent changes in TCA cycle precursors. Given the hypotonic exposure, a metabolic switch 
away from protein breakdown was hypothesized. Given the association between chronic diseases and the 
Warburg-like metabolic pattern, oxidative glycolysis via the TCA cycle (also known as oxidative phosphory-
lation) was distinguished from glycolysis to lactate.

Specific Aim 3: Compare results derived from different specimen
To check if metabolomic effects of hydration depend on the type of specimen assayed, the agreement 

in results from different specimen was described: serum vs. urine, first-morning urine vs. post-bolus urine, 
and serum normalized relative to creatinine vs. serum relative to the pooled Week 1 sample. Agreement was 
described in terms of overall change in metabolomic profile, known compounds that changed by 2-fold or 
more, which metabolic pathways appeared potentially impacted, and direction of potential impact.

Results

Participant characteristics
Four healthy, normal weight men (ages 21-25 years) were included in this analysis. They 

maintained a total energy intake of approximately 2,000 kcal/d and did not significantly 
change their physical activity level over the study weeks. The four participants significantly 
increased plain water intake between Week 1 and Week 6. The increase in drinking water 
was associated with a decrease in other beverage intake of about 1 serving/d, but no signifi-
cant change in total macronutrient or energy intake.

Between Week 1 and Week 6, the four study participants included in this analysis expe-
rienced a change in hydration classification (see Table 1). In Week 1, all four participants had 
a urine osmolality above 800 mOsm/kg H2O. Two of the four participants had saliva osmolal-
ity over 100 mOsm/kg H2O. In Week 6, all four participants had urine osmolality below 800 
mOsm/kg H2O, saliva osmolality below 100 mOsm/kg H2O, and serum osmolality below 295 
mOsm/kg H2O.

The sustained increase in water intake was associated with significantly decreased plas-
ma copeptin and urine osmolality, over four weeks, and significantly greater red blood cell 
volume, deuterium elimination rate (shorter half-life of water in the body), estimated total 
body water, and body weight in Week 6 relative to Week 1.

In Week 1, the average decrease in urine osmolality following acute hypotonic challenge 
exceeded 700 mOsm/kg H2O. The response to acute challenge decreased significantly be-
tween Week 1 and Week 6, suggesting greater retention of the 750 mL water bolus, following 
overnight food and water restriction, in Week 6. Other responses to acute osmotic challenge 
suggested a trend towards greater tolerance of hypotonicity in Week 6 but did not reach 
statistical significance. In Week 6, the mean decrease in saliva osmolality following the water 
bolus was about one tenth the decrease observed in Week 1. The osmolality associated with 
half-maximal RBC deformability was about 10 mOsm/kg H2O lower in Week 6.
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Significant changes in serum chemistry and indirect calorimetry signaled change in mac-
ronutrient and energy metabolism for the four study participants between Week 1 and Week 
6. The fasting serum total protein and albumin decreased, while serum glucose increased. 
The fasting, recumbent respiratory quotient was significantly higher in Week 6 compared to 
Week 1 (see supplementary Table S1). 

A downward trend in the HOMA index and significant mean (SE) decrease in the Duned-
inPACE index of 0.027 (0.008) further signaled reduced age-related chronic disease risk be-
tween Week 1 and Week 6.

Specific Aim 1: Check for a major alteration in metabolism
Metabolomic analysis identified a total of 562 features in serum, including 168 known 

compounds. From Week 1 to Week 6, the majority of features changed in abundance by 
2-fold or more, relative to creatinine, for at least three of the four study participants. A total 
of 78 features decreased and 247 increased (supplementary Figure S1).

Table 1. Characteristics of Adapt study participants who changed hydration classification between Week 
1 and Week 6. The table describes four study participants. Mean (± SE) weekly nutrient intakes were 
estimated from 7-day diet records collected over six consecutive weeks. Post-bolus samples were collected 
60-90 min after the participants consumed 750 mL drinking water. Table 1 presents indices of cell water or 
total body water that were available in the Adapt study database. For detail about the methods see [96, 97]. 
*Significantly different (p<0.05) from corresponding Week 1 value in fixed effect regression models.

 

 

  Week 1 Weeks 3-6 Week 6 
  Mean (SE) Mean (SE) Mean (SE) 
7-Day water intake     
Plain drinking water  L/d 0.4 (0.2) 1.7 (0.1)* 2.1 (0.1)* 
 mL/kg 6.2 (3.2) 25.1 (2.0)* 30.8 (1.5)* 
Total water  L/d 2.0 (0.5) 2.9 (0.2)* 3.3 (0.4)* 
 mL/kg 29.8 (8.4) 43.1 (3.3)* 48.0 (5.9)* 
Water from other beverages L/d 0.7 (0.2) 0.5 (0.1)* 0.4 (0.2)* 
 mL/kg 10.1 (3.2) 7.0 (1.4)* 5.8 (2.3)* 
Water from food L/d 0.9 (0.2) 0.8 (0.6) 0.8 (0.2) 
 mL/kg 13.5 (2.6) 11.0 (0.8) 11.5 (2.4) 
7-Day solute intake     
Total energy  kcal/d 2106 (208) 1879 (79) 1991 (141) 
Total protein g/d 95 (7) 81 (5) 85 (13) 
Total carbohydrate g/d 247 (22) 209 (10) 225 (19) 
Total fat g/d 87 (13) 83 (5) 87 (12) 
Point in time osmolality     
Random fasting saliva mOsm/kg H2O 93.5 (12.7) 86.3 (4.5) 78.8 (7.0) 
First-morning urine mOsm/kg H2O 979.1 (119.8) 675.3 (36.3)* 629.2 (59.0)* 
Post-bolus urine mOsm/kg H2O 394.3 (199.6) 309.6 (39.4) 333.3 (91.2) 
Post-bolus serum mOsm/kg H2O 290 (1.4) 287.7 (0.6) 286.9 (1.7) 
Point in time anti-diuresis     
Plasma copeptin pmol/L/crt 0.43 (0.1) 0.33 (0.03)* 0.29 (0.02)* 
Acute response to osmotic challenge    
Change in saliva after bolus  mOsm/kg H2O -26.5 (12.6) -14.7 (5.4) -3.4 (5.9) 
Change in urine after bolus mOsm/kg H2O -747.0 (73.8) -365.7 (46.9)* -295.9 (124.2)* 
RBC minimal deformability mOsm/kg H2O 139.9 (3.7) 135.6 (1.4) 135.4 (3.5) 
RBC half-maximal deformability mOsm/kg H2O 409.1 (6.9) 393.9 (4.3) 397.1 (5.9) 
Water at the cell level     
RBC mean corpuscular volume fL 89.9 (1.7) 91.8 (1.0)* 91.8 (2.3) 
RBC K:Na ratio 9.78 (0.69) 8.82 (0.25) 8.61 (0.34)* 
Water at the whole-body level     
Half-life of water in the body days 7.3 (0.9) 6.8 (0.3) 6.5 (0.4)* 
Deuterium elimination rate  ∆ Ln ppm/days 0.102 (0.013) 0.105 (0.005) 0.109 (0.007)* 
Estimated GFR mL/min/1.73m2 129.2 (2.8) 124.6 (2.3) 123.2 (7.6) 
Weight change relative to Week 1 %  +1.6 (0.3)* +2.1 (0.5)* 
TBW by Watson equation L 41.2 (0.3) 41.5 (0.2)* 41.6 (0.3)* 
TBW by Hume equation L 38.3 (0.3) 39.1 (0.2)* 39.2 (0.3)* 
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The Week 1 and Week 6 serum metabolomic profiles differed, based on qualitatively dif-
ferent heatmaps (supplementary Figure S2), and non-overlapping 95% confidence ellipses 
in OPLS-DA analysis accounting for time as a factor. The Week 1 and Week 6 profiles did not 
differ significantly in unsupervised PCA analysis, which does not account for clustering by 
time. The PCA score plots separated the serum metabolomic profiles of two participants in 
Week 1 from all other profiles (supplementary Figure S3).

Of the 168 known compounds detected in serum, 86 increased or decreased by 2-fold or 
more for three or more participants. Pathway analysis of the 86 known compounds identi-
fied over two dozen pathways potentially impacted by the 2-fold changes. Tables 2-4 list the 
known compounds that changed by 2-fold or more by potentially impacted pathway. Supple-
mentary Table S2 lists the log fold change of each known compound. Supplementary Table 
S3 lists impact factors and p-values for each metabolic pathway.

Table 2. Metabolic pathways that appeared decreased in serum and increased in post-bolus urine. Red and 
blue font highlight known compounds that changed by 2-fold or more between Week 1 and Week 6. Red font 
represents compounds that increased. Blue font represents compounds that decreased. Urine results are 
based on analyses that normalized urine feature abundance relative to creatinine. c Serum results based on 
analyses that normalized serum feature abundance relative to creatinine. p Serum results based on analyses 
that normalized serum feature abundance relative to the pooled Week 1 sample.

 

 First-morning 
urine 

Post-bolus 
urine 

Post-bolus 
serumc 

Post-bolus  
serump 

Alanine, aspartate 
& glutamate  
metabolism 

L-Glutamine 
N-acetyl- 

L-aspartate Fumarate 
Succinate 

L-Glutamine 
L-Alanine 

L-Glutamate 

L-Glutamine 
L-Alanine 

L-Glutamate 

L-Glutamine 
L-Alanine 

L-Glutamate 

Aminoacyl-tRNA biosynthesis 

L-Glutamine 
L-Tryptophan 

L-Lysine 
L-Leucine 
L-Cysteine 

L-Serine 
L-Tyrosine 

 

L-Glutamine 
L-Tryptophan 

L-Valine 
L-Alanine 

L-Threonine 
L-Proline 

L-Glutamate 

L-Glutamine 
L-Tryptophan 

L-Valine 
L-Alanine 

L-Threonine 
L-Proline 

L-Glutamate 
L-Phenylalanine 

L-Isoleucine 
L-Lysine, L-Leucine 

 

L-Glutamine 
L-Tryptophan 

L-Valine 
L-Alanine 

L-Threonine 
L-Proline 

L-Glutamate 
L-henylalanine 

L-Isoleucine 
L-Lysine, L-Leucine 

L-Tyrosine 
L-Methionine 

Arachidonic acid metabolism Arachidonate 
Prostaglandin F2alpha  Arachidonate Arachidonate 

Arginine & proline metabolism  
L-Proline 

L-Glutamate 
L-Ornithine 

Urea L-Proline 
L-Glutamate 
L-Ornithine 

Urea L-Proline 
L-Glutamate 
L-Ornithine 

Arginine 
 metabolism 

L-Glutamine 
L-Citrulline Fumarate 

L-Glutamate 
L-Ornithine 
L-Glutamine 

L-Glutamate 
L-Ornithine 
L-Glutamine 

L-Glutamate 
L-Ornithine 
L-Glutamine 

Retinol metabolism Retinal Retinal Retinal Retinal 

Glyoxylate & dicarboxylate  
metabolism 

L-Glutamine 
cis-Aconitate 

Glycolate L-Serine 
D-Glycerate 

L-Glutamine 
L-Glutamate   

Linoleic acid metabolism  Linoleic acid Linoleic acid Linoleic acid 
Nitrogen  
metabolism  L-Glutamine 

L-Glutamate 
L-Glutamine 
L-Glutamate 

L-Glutamine 
L-Glutamate 

Butanoate  
metabolism  (R)-3-Hydroxy-butanoate 

L-Glutamate 
(R)-3-Hydroxy-butanoate 

L-Glutamate  
D-Glutamine & 
D-Glutamate metabolism  L-Glutamine 

L-Glutamate 
L-Glutamine 
L-Glutamate 

L-Glutamine 
L-Glutamate 

Glutathione metabolism  L-Glutamate 
L-Ornithine  

L-Glutamate 
L-Ornithine 

5-Oxoproline 

Valine, leucine & isoleucine  
biosynthesis  L-Threonine 

L-Valine 

L-Threonine 
L-Valine  

L-Isoleucine 
L-Leucine 

L-Threonine 
L-Valine 

L-Isoleucine 
L-Leucine 
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Specific Aim 2: Check for a switch in macronutrient and energy metabolism, redox balance, 
and inflammation
Figure 1 summarizes all of the pathways identified as potentially impacted. Pathways 

where the intermediate(s) decreased (blue font) were distinguished from those where the 
intermediate(s) increased (red font).

Pathways identified as potentially impacted include pathways involved in macronutri-
ent and energy metabolism, redox balance, and inflammation. Collectively, the pathway anal-
yses suggest concurrent changes in metabolism away from protein degradation, favoring 
oxidation of carbohydrate in the TCA cycle instead of glucose metabolism to lactate.

Table 4. Metabolic pathways that appeared potentially impacted in urine or serum but not both specimen 
types. Red and blue font highlight known compounds that changed by 2-fold or more between Week 1 and 
Week 6. Red font represents compounds that increased. Blue font represents compounds that decreased. 
Urine results are based on analyses that normalized urine feature abundance relative to creatinine. c Serum 
results based on analyses that normalized serum feature abundance relative to creatinine. p Serum results 
based on analyses that normalized serum feature abundance relative to the pooled Week 1 sample.

 

 

 First-morning 
urine 

Post-bolus 
urine 

Post-bolus 
serumc 

Post-bolus  
serump 

Pantothenate & CoA 
biosynthesis    L-Cysteine  

Uracil 

Glycerolipid metabolism 
1-Acylglycerol 

Glycerol 
D-Glycerate 

1-Acylglycerol 
 

 

Glycine serine & threonine 
metabolism 

L-Serine  
L-Cysteine 

D-Glycerate 
L-Serine  

L-Cysteine 
 

 

Beta-Alanine metabolism  beta-Alanine 
Uracil 

 beta-Alanine 
Unsaturated fatty acids 
biosynthesis   (9Z)-Octadecenoic acid 

Linoleate Arachidonate  
Phenylalanine tyrosine & 
tryptophan biosynthesis L-Tyrosine  L-Phenylalanine L-Phenylalanine L-

Tyrosine 
Purine metabolism   L-Glutamine Adenine 

Inosine  
 

 

Table 3. Metabolic pathways that appeared increased in serum and decreased in urine. Red and blue 
font highlight known compounds that changed by 2-fold or more between Week 1 and Week 6. Red font 
represents compounds that increased. Blue font represents compounds that decreased. Urine results are 
based on analyses that normalized urine feature abundance relative to creatinine. c Serum results based on 
analyses that normalized serum feature abundance relative to creatinine. p Serum results based on analyses 
that normalized serum feature abundance relative to the pooled Week 1 sample.

 

 

 First-morning 
urine 

Post-bolus 
urine 

Post-bolus 
serumc 

Post-bolus  
serump 

     
Ascorbate & 
aldarate 
metabolism 

UDP-glucuronate 
L-Gulonate 
D-Glucarate 
myo-inositol 

UDP-glucuronate 
L-Gulonate 
D-Glucarate 

UDP-glucuronate 
L-Gulonate 
D-Glucarate 

UDP-
glucuronate 
L-Gulonate 
D-Glucarate 

Pentose & glucuronate 
interconversions 

UDP-glucuronate 
L-Arabitol 
L-Gulonate 

Xylitol D-Xylose 

UDP-Glucuronate L-Arabitol 
L-Gulonate Xylitol D-Xylose 

UDP-glucuronate 
L-Arabitol 
L-Gulonate 

D-Xylose 

UDP-
glucuronate 
L-Arabitol 
L-Gulonate 

Galactose metabolism 

D-Sorbitol 
1D-myo-inositol 

3-beta-D-Galactosyl-sn-
glycerol alpha-D-Galactosyl-

(1->3)- Glycerol 
Lactose 

myo-inositol 

D-Sorbitol 1D-myo-inositol 
3-beta-D-Galactosyl-sn-

glycerol alpha-D-Galactosyl-
(1->3)- Sucrose 

Lactose 

D-Sorbitol  
1D-myo-inositol 

3-beta-D-Galactosyl-sn-
glycerol alpha-D-Galactosyl-

(1->3)- Sucrose 
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Protein metabolism
Observed changes in the serum abundance of amino acids implied decreased amino 

acid-derived carbons for the TCA cycle, including pyruvate, oxaloacetate, succinyl-CoA, and 
α-ketoglutarate:

•	 Decreased transamination of L-alanine reduces pyruvate.
•	 Decreased transamination of beta-alanine reduces malonate semialdehyde which is 

converted to acetyl CoA.
•	 Decreased catabolism of alanine, aspartate and glutamate reduces oxaloacetate.
•	 Decreased catabolism of BCAA reduces glutamate-derived succinyl-CoA.
•	 Decreased metabolism of phenylalanine, tyrosine and tryptophan decreases alanine 

metabolism.
•	 Decreased metabolism of arginine and glutamate reduces α-ketoglutarate.
•	 Decreased aminoacyl-tRNA synthesis decreases substrate for acylation-mediated 

glucose sensing, signaling and transcription.

Figure 1. Metabolic pathways potentially impacted by the induced change in chronic hydration based on 
changes in serum metabolomic profile between Week 1 and Week 6. Pathway impact was analyzed for 
known compounds that changed by 2-fold or more in serum. Metabolomic pathways identified only in serum 
when normalized relative to the pooled Week 1 samples are marked with an asterisk (*). Bold font denotes 
2-fold or greater change observed in this analysis. Red and blue font represent 2-fold or greater increases 
and decreases between Week 1 and Week 6, respectively. Metabolic pathways potentially impacted are 
shown enclosed in a box. Metabolic intermediates that changed are shown without a box. Hypothesized 
correlated changes, which might be inferred but were not observed in this analysis, are shown without bold 
font. Example sources of substrate for the TCA cycle are highlighted in yellow. See Table 3 for detail about 
metabolic pathways potentially impacted.
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Carbohydrate metabolism
Changes in the serum abundance of carbohydrates, such as UDP-glucuronate, favored 

oxidation of glucose in the TCA cycle:
•	 Increased glucuronate and xylitol, produced from catabolism of myo-inositol, in-

creases substrate for the pentose phosphate pathway.
•	 Increased metabolism of ascorbate.
•	 Decreased retinol metabolism increases glucose availability by decreasing glycogen 

synthesis from acetate, lactate, and glycerol.
•	 Increased galactose metabolism.

Purine metabolism
Observed decreases in serum L-glutamine, adenine and inosine implied reduced purine
synthesis and/or degradation.
•	 Glutamine availability limits de novo purine biosynthesis.
•	 Nucleic acid breakdown results in the release of free purine nucleobases in the form 

of adenine, guanine, and the hypoxanthine base of inosine monophosphate.

Lipid metabolism
Changes in the serum lipid abundance indicated decreased reliance on ketone body and 

fatty acid precursors for the TCA cycle, consistent with increased glucose utilization:
•	 Decreased linoleic and arachidonic acid metabolism imply decreased release of 

membrane lipid.
•	 Decreased unsaturated fatty acid synthesis limits lipid-derived acetyl CoA.
•	 Decreased butanoate (butyrate) metabolism reduces R-3-hydroxybutyrate.

Redox balance & inflammation
Increased serum abundance of vitamin C suggested potential impact on redox balance. 
•	 Decreased beta-alanine suggested increased antioxidant capacity from carnosine 

and anserine. 
•	 Decreased serum arachidonate suggested decreased inflammation.
•	 Beta-alanine is produced from the breakdown of carnosine and/or anserine.

Specific Aim 3: Check for agreement between specimen types 
This study analyzed two kinds of specimen (serum and urine), which were collected 

under two kinds of conditions (first-morning and following hypotonic challenge) and nor-
malized with two kinds of methods (relative to creatinine or relative to the pooled Week 1 
sample). The following results were similar across all specimen types, conditions, and nor-
malization methods:

•	 The majority of features changed in abundance between Week 1 and Week 6. In the 
first-morning urine and post-bolus urine, 67% and 73% of the 562 features changed 
by 2-fold or more, respectively.

•	 OPLS-DA plots with non-overlapping 95% confidence regions suggested significant-
ly different metabolomic profiles in Week 6 vs. Week 1.

•	 PCA analysis separated the profiles of two participants in Week 1 from the rest of the 
data from Week 1 and Week 6.

Of the 20 pathways that appeared impacted based on serum analyses, 17 also appeared 
impacted in urine analyses (see Tables 2, 3 and S3). Results of the heatmap, OPLS-DA and 
PCA analyses of each specimen type are detailed in the Supplementary Materials (see Fig-
ures S1-S3).
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Differences between urine and serum
Unlike the OPLS-DA results for the serum data, the OPLS-DA results for the urine data 

suggested reduced between-person variation in the urine metabolomic profile in Week 6 
(supplementary Figure S3). Potential impacts on glycine, serine and threonine metabolism, 
glyoxylate and dicarboxylate metabolism, and glycerolipid metabolism were only detected in 
urine. The pantothenate & CoA biosynthesis, glutathione metabolism, and purine pathways 
were not identified as potentially impacted based on urine (Tables 2-4).

The urine and serum metabolomic results differed in terms of directions of effect. The 
majority of low molecular weight features increased in abundance relative to creatinine, in 
serum, but decreased relative to creatinine, in urine (Table 3). The ascorbate & aldarate, 
pentose & glucuronate, and galactose pathways, which appeared upregulated based on the 
serum metabolomic profile, appeared downregulated based on the urine metabolomic pro-
files. Metabolic pathways which appeared increased in post-bolus urine (Table 2), appeared 
to decrease in the other specimen types: Alanine, aspartate & glutamate metabolism, amino-
acyl-tRNA biosynthesis, arachidonic acid metabolism, arginine & proline metabolism, argi-
nine biosynthesis, retinol metabolism, and glyoxylate & dicarboxylate metabolism.

Differences by timing and normalization method
Many features which decreased in abundance in the first-morning urine from Week 1 

to Week 6 increased in abundance in the post-bolus urine (see Table 2). The acute change 
in condition, from overnight food and water restriction to 60 min post-ingestion of 750 mL 
drinking water, was associated with a reversal in the direction of potential impact of the 
chronic hydration exposure on alanine, aspartate, glutamate and glyoxylate metabolism and 
arginine and aminoacyl-tRNA synthesis.

Most of the metabolic pathways (12 out of 14) that were identified as potentially im-
pacted based on the serum results, when normalized by creatinine, also appeared potential-
ly impacted when normalized by the pooled Week 1 sample. The two exceptions, butanoate 
and galactose pathways, did not appear impacted when normalization did not account for 
hemodilution. Normalization by the pooled sample, which might better reflect the in vivo or 
physiological condition, identified three pathways, which were not identified by normaliza-
tion by creatinine. Potential impacts on glutathione and beta-alanine metabolism and panto-
thenate & CoA biosynthesis were observed without correction for hemodilution.

Discussion

Inspired by experimental literature indicating that chronic hypotonicity results in a 
“major alteration” in metabolism at the cell level [11, 15], this clinical study sought to check 
if chronic hypotonicity is associated with a broad array of metabolic changes at the whole 
person level. The study took advantage of frozen specimen collected from healthy young 
men for the Adapt Study, before and after a chronic hypotonic exposure, induced by four 
weeks of sustained higher intake of drinking water. This paper reports results of ancillary 
urine and serum metabolomic analyses.

The present study population experienced four weeks of physiologically relevant hypo-
tonicity, at the cell level, based on significantly decreased plasma copeptin and urine osmo-
lality in Weeks 3-6 vs. Week 1. Plasma copeptin is a proxy for ADH because it is released in 
equimolar amounts with ADH [130]. Hypotonic swelling of osmoreceptor cells in the hypo-
thalamus inhibits ADH release and urine concentration [131].

Significantly altered acute response to hypotonic challenge in Week 6 vs. Week 1 sug-
gests adaptation to chronic hypotonicity in this study population. Significant decreases in 
RBC K:Na (altered intracellular osmolytes) co-occurred with significant increases in cell wa-
ter (as indexed by MCV) and increased body water (as indexed by percent change in body 
weight), despite significantly faster water turnover and decreased effort to retain body wa-
ter via urine concentration.
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Check for a major alteration in metabolism
Consistent with results from controlled experiments at the cell level [11, 15], chronic 

hypotonicity did appear to be associated with a major alteration in metabolism in the pres-
ent study. In absolute terms, hundreds of metabolic features increased or decreased in abun-
dance by 2-fold or more. In relative terms, over half of the known and unknown features 
detected in serum changed by 2-fold or more. The overall metabolic profile changed signifi-
cantly based on OPLS-DA. Over two dozen metabolic pathways were potentially impacted.

Check for a switch in macronutrient and energy metabolism, redox balance, 
and inflammation
Results of the present study indicated a switch in metabolism away from an aestivation-

like pattern. Aestivation is characterized by protein breakdown and accumulation of organic 
osmolytes, including urea [4, 5, 7, 9]. At the cell level, adaptation to chronic hypotonicity 
switches metabolism by downregulating protein breakdown and metabolic pathways that 
accumulate intracellular products of low molecular weight [41]. In the present study, pro-
tein-breakdown and urea metabolism decreased between Week 1 and Week 6, consistent 
with experimental literature at the cell level. 

The present results are also consistent with a switch away from a Warburg-like pattern, 
to favor oxidation of carbohydrate via the TCA cycle instead of aerobic oxidation of carbo-
hydrate to produce lactate. Between Week 1 and Week 6, protein-derived precursors for the 
TCA cycle decreased, while carbohydrate-derived precursors increased. Serum lactic acid 
decreased by 87% (supplementary Table S2 gives values as log-fold changes). Fasting serum 
glucose and the fasting whole body respiratory quotient increased significantly (see supple-
mentary Table S1), despite no change in the mean weekly total energy and carbohydrate 
intake and no apparent decrease in insulin sensitivity. Fasting plasma insulin and the HOMA 
index of insulin resistance trended down from Week 1 to Week 6.

Consistent with experimental data [67], the chronic hypotonic exposure was associated 
with potential impacts on the pentose phosphate pathway. The pentose phosphate pathway 
produces glucose-6-phosphate, which in turn can either be used for glycolysis or recycled 
through the pentose phosphate pathway [132, 133]. Flux of glucuronate and xylitol through 
the pentose phosphate pathways favors oxidation of glucose via glycolysis. The pentose 
phosphate pathway increases ascorbic acid recycling [134].

Concurrent changes in vitamin C, retinoic acid, proline abundance, and galactose me-
tabolism suggested coordinated impact on oxidative glycolysis. Vitamin C boosts the conver-
sion of pyruvate into acetyl CoA within the mitochondria by inhibiting pyruvate dehydroge-
nase kinase-1 (PDK-1), a key mitochondrial enzyme that redirects glucose metabolism from 
oxidative phosphorylation toward aerobic glycolysis [135]. Under fasting conditions, lower 
retinoic acid may contribute to metabolic flexibility [136-138]. Decreased retinol metabo-
lism increases glucose availability by decreasing glycogen synthesis from acetate, lactate, 
and glycerol. Reduced proline abundance decreases net glycogen deposition because proline 
simultaneously increases glycogen synthase flux and inhibits phosphorylase flux [139]. In-
creased galactose metabolism favors mitochondrial oxidative glycolysis [140].

The Warburg effect is characterized by increased production of lactate because of chang-
es that include inhibition of the pyruvate dehydrogenase complex by pyruvate dehydroge-
nase kinases and high expression of NF-κB [93]. The Warburg effect is also characterized by 
increased purine metabolism, as glycolytic intermediates (3-phosphoglycerate and fructose-
6-phosphate) are routed to the non-oxidative branch of the pentose phosphate pathway, 
which generates ribose-5-phosphate, substrate for purine metabolism. The Warburg effect 
is associated with low ATP concentrations [141], which in turn can reflect low phosphate 
levels [142]. In the present study, purine metabolism was decreased in Week 6 vs. Week 1. 
Serum phosphate increased by 20% relative to creatinine between Week 1 and Week 6.

The switch favoring oxidative glycolysis, in this study, appeared to co-occur with a switch 
in dominant antioxidants with no adverse effect on inflammation. As vitamin C and TCA 
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cycle metabolism increased, glutathione, arginine, linoleic acid and beta-alanine metabolism 
decreased. Vitamin C is considered the most effective aqueous-phase antioxidant in human 
blood plasma, which unlike other plasma antioxidants, completely protects plasma lipids 
against detectable peroxidative damage induced by aqueous peroxyl radicals [143]. Higher 
TCA cycle activity causes an increase in TCA cycle acids, which are antioxidants [144]. Glu-
tathione, nitric oxide produced from arginine, and conjugated linoleic acid isomers, though 
important antioxidants [145-147], may be less compatible with sustained hypotonic condi-
tions where protein and lipid breakdown are reduced, nitric oxide-mediated vasodilation is 
less needed, and NF-κB-dependent cytokine expression [148, 149] is downregulated by hy-
potonic conditions [150, 151]. Reduced breakdown of the dipeptides anserine and carnosine 
to beta-alanine favors anserine and carnosine antioxidant capacity. The observed decreases 
in arachidonic acid metabolism, which imply decreased inflammation [152], suggest no loss 
of antioxidant protection from the decrease in glutathione, arginine, and linoleic acid me-
tabolism.

The coordinated metabolomic changes may have been at least partially mediated by 
chronic effects on gene transcription, given that synthesis of aminoacyl-tRNA decreased. 
Decreases in aminoacyl-tRNA synthesis decrease substrate for acylation-mediated glucose 
sensing, signaling and transcription which determine glucose uptake, energy utilization and 
de novo lipogenesis [153].

Check for agreement between specimen types
General agreement between specimen types, with respect to potential impacts on mac-

ronutrient and energy metabolism, suggests that any of the four specimen types might rea-
sonably be used to check for hydration effects on metabolomic profile (impact vs. no impact). 
Inference regarding specific pathways or directions of effect appeared to depend on speci-
men type and condition, however.

Many low molecular weight features increased in serum, relative to creatinine, possi-
bly reflecting counterregulatory accumulation of osmolytes to gradually retain water and 
increase the total body water pool. In the Adapt Study participants, the induced change in 
hydration was associated with significant decreases in RBC K:Na and increases in plasma 
aldosterone, serum sodium, RBC volume, and body weight [96, 97].

In contrast to observed increased abundance in serum, the majority of low molecular 
weight features decreased in abundance in post-bolus urine. Between-person differences 
in metabolomic profile also decreased. The decreases in urine feature abundance, relative 
to creatinine, may be consistent with chronic relative hypotonicity limiting the intracellular 
accumulation of low molecular weight osmolytes and reducing the efflux of osmolytes fol-
lowing an acute hypoosmotic challenge. Homeostatic mechanisms that prevent serum con-
centrations from varying outside a narrow range might account for the different response in 
urine compared to serum.

Opposite directions of potential pathway impact in serum and urine metabolomic stud-
ies are attributed to homeostatic regulation and local tissue effects [154]. The serum me-
tabolomic profile or metabolic ‘fingerprint’ is known to be distinct from the metabolic ‘foot-
print’ observable in urine [107]. While serum may reflect whole body metabolism, urine is 
thought to mainly reflect the renal cellular and functional processes and state of the kidney 
[107]. Opposite effects on serum and urine metabolomic profiles may not be inconsistent 
effects if increased renal excretion contributes to or explains decreased serum abundance.

In general, the abundance of a given free metabolite in serum or urine is determined 
by the net balance of its appearance in (by production, influx and/or release from seques-
tration) and disappearance from (by conversion, efflux, and/or sequestration) the fluid. In 
serum the abundance of glutamine, for example, is determined by its release from cells (e.g. 
from skeletal muscle, liver, brain, lung, gut, adipose tissue), by its uptake into cells (e.g. kid-
ney, small intestine, liver, endothelia, blood cells, immune cells, cancer cells), by paracellu-
lar exchange between compartments (e.g. blood/gut, blood/peritoneal cavity, across blood 
brain barrier) and by its direct loss via urine which is determined by its glomerular filtration 
and tubular reabsorption [155-157].
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Contributions from the various inputs to the net glutamine balance may change consid-
erably during adaptation to altered conditions [158]. Here, glutamine abundance decreased 
in first-morning urine and post-bolus serum but increased in post-bolus urine when com-
pared Week 6 to Week 1. The decrease in first-morning urine could reflect decreased glu-
tamine in plasma and hence less glutamine filtered by the kidney and/or increased tubular 
reabsorption of glutamine. A decrease in serum glutamine concentration would be consis-
tent with a net shift of glutamine to protein synthesizing tissues like liver or skeletal muscle, 
increased synthesis of glutathione, or decreased urea production. As plasma protein and 
albumin decreased from Week 1 to Week 6, the data suggest increased protein synthesis in 
skeletal muscle. Also BUN and BUN:creatinine trended to decrease. The decreased serum 
glutamine might also be explained by enhanced gluconeogenesis from glutamine.

Opposite directions of potential impact in the urine metabolome, before and after hypo-
tonic challenge, may be useful for distinguishing chronic from acute effects of hypotonicity 
and generating hypotheses about mechanisms of adaptation. The agreement in direction 
of potential impact, i.e. the null effect of the acute challenge, on the ascorbate, pentose and 
glucuronate interconversions, galactose, glycerolipid, and glycine pathways suggests chronic 
or regulated change in these pathways.

Potential implications for chronic disease and aging
The results of this study imply potential for hydration metabolomic profiles to be in-

versely associated with aging and risk for chronic diseases, including obesity, diabetes, ath-
erosclerosis, and cancer [152]. The DunedinPACE index, a DNA methylation marker of the 
pace of aging, decreased significantly. The metabolomic patterns shifted away from aesti-
vation-like and Warburg-like profiles. Aestivation-related metabolism, including elevated 
BCAA and urea cycle metabolites, is associated with increased risk of insulin resistance, 
obesity, hypertension, dyslipidemia and coronary artery disease [84, 85, 87, 90, 159]. The 
Warburg metabolic profile is implicated in inflammation and the pathogenesis of cancer and 
atherosclerosis [152].

Alignment of the present results in free-living young men with experimental data at the 
cell level suggests causal mechanisms to explain observational effects of sustained higher 
intake of drinking water on chronic disease and mortality. The present results imply that 
sustained hypotonic exposure may reduce chronic disease risk via multiple mechanisms, 
simultaneously, including NF-κB signaling and gene transcription, redox balance, and Renin–
Angiotensin–Aldosterone System (RAAS) activation.

Between Week 1 and Week 6, concurrent with decreases in extracellular osmolality, leu-
kocyte SGK1 mRNA decreased (see [96, 160]). Hyperosmotic stress, SGK1 and retinoic acid 
trigger the NF-κB signaling cascade and gene transcription [150, 151]. SGK1 accounts for a 
large part of the pathophysiological consequences of dehydration [161, 162]. Retinoic acid, 
via NF-κB signaling, affects transcription of over 500 genes involved in cell proliferation, dif-
ferentiation, and apoptosis [163].

The observed increase in serum abundance of vitamin C and decrease in arachidonic 
metabolism are consistent with reduced oxidative stress and inflammation. Vitamin C is 
hypothesized to prevent or delay the development of certain cancers, cardiovascular dis-
ease, and neurodegenerative diseases [164] by limiting the damaging effects of free radicals 
through its antioxidant activity. The arachidonic acid pathways are implicated in obesity, 
diabetes, CVD, cancer and inflammatory diseases including asthma and arthritis [165, 166].

The present results carry implications for clinical and epidemiological research. If hy-
dration causes major alteration in the whole metabolic profile, focus on one hydration effect 
at a time may miss meaningful correlated variation. Single hydration effects may be con-
founded or modified by other aspects of the profile. The ‘optimal’ hydration reference group 
may be misclassified if individuals respond to or compensate for sub-optimal hydration dif-
ferently. Acute and chronic effects of hydration may interact.



Paracelsus Proceedings of Experimental Medicine 2023;2:41-66
DOI: 10.33594/000000619
Published online: 7 April, 2023 57

© 2023 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Stookey et al.: Metabolomic Profile Associated with Induced Change in Chronic Hydration

Limitations & Future directions

Inconsistent findings across studies
Results of the present analysis conflict with earlier Adapt Study analyses to some extent. 

In the present analysis, BCAA abundance appeared to decrease between Week 1 and Week 
6 (based on pathway impact p-value <0.001 and FDR <0.001), whereas in earlier analyses 
[96], mean plasma amino acid concentrations did not change significantly between these 
time points. The difference in findings may be attributable to the fact that earlier analyses 
evaluate the effect of time (e.g. Week 6 vs. Week 1) as opposed to the effect of different hydra-
tion conditions. The earlier analysis included all Adapt Study participants, unlike the pres-
ent one, which included only participants who experienced a measured change in hydration 
classification. Significant between-participant differences in saliva osmolality, deuterium 
elimination rate, and change in serum sodium signal heterogeneity at baseline, which may 
have modified effects of the hydration exposure [97].

Apparent decreases in protein catabolism associated with four weeks of sustained hypo-
tonic water intake in the present analysis are consistent with previously reported significant 
decreases in whole body protein breakdown associated with experimentally induced acute 
hypoosmolality vs. isoosmolality [94]. The observed prioritization of glucose as substrate 
for the TCA cycle in this long-term study needs to be reconciled, however, with a reported de-
crease in glucose clearance and increase in lipid oxidation associated with acute hypotonic 
exposure [94]. Also, unlike previous short-term experiments, but like other metabolomic 
analyses, this metabolic pathway analysis did not detect change in glycogen synthesis or 
breakdown [167]. LC-MS methods may not accurately index glycogen because they cannot 
distinguish hexoses with the same molecular formula [167].

Features observed in other Adapt Study analyses of serum and urine, including sodium, 
potassium, vitamin D, and taurine, were not detected by the WCMC and not available in the 
metabolomic analysis dataset. Absence of their mention in the present analysis may reflect 
WCMC methods, which are tailored to describe primary metabolism, such as protocol that 
removes features considered to contribute noise, like sodium, or limitations related to ion-
ization voltage so high that molecules like taurine fragment into multiple products [168, 
169].

Methods limitations
Several aspects of study design limit interpretation of the present results. Aspects of 

primary metabolism were described only for the four study participants included in this 
analysis, given the conditions specified in the Adapt protocol. Participants were non-acutely 
ill, free-living, sedentary, young men, who consumed the same foods on a weekly basis, and 
who initially reported less than 2 L/d total water intake [96, 97]. Due to the small sample 
size and non-random recruitment strategy, the results may not generalize to non-acutely ill, 
sedentary young men, in general. The results may not generalize to women, children, older 
adults, athletes, patients, or the general population. It remains to be determined if instruc-
tion to consume an additional 2 L/d or 30 mL/kg/d plain drinking water results in a similar 
switch in metabolism in other population groups, under other conditions.

Despite intention to enroll participants with similar sub-optimal hydration status, the 
‘true’ long-term hydration status of each participant at baseline was unknown. Urine osmo-
lality is sensitive to acute change in hydration but vulnerable to misclassification error with 
respect to chronic status. Results of the unsupervised PCA, which separated the data for two 
participants from all other data points, suggest that two participants had different hydration 
status at baseline.

Despite intention to test a homogeneous exposure, each individual’s ‘true’ water intake 
requirement was unknown. The Adapt Study exposure was expressed in absolute terms (L/d 
above baseline) as opposed to mL/kg or a tailored volume to replace individual-specific defi-
cit. The fact that at least one Adapt study participant did not change hydration classification 
suggests heterogeneity in the dose, timing and/or conditions required to achieve the same 
hydration outcome for all.
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The effects of the present study may be confounded by unobserved variability in pro-
tocol adherence, diet, physical activity and/or other determinants of water intake require-
ments. Although each participant served as his own control, the study design was not 
randomized. Although participants were instructed to maintain the same diet over time, 
without researcher-provided meals, standardized diet cannot be guaranteed. Controlled diet 
experiments would be needed to confirm and characterize independent effects of water on 
changes in metabolism.

Due to the small sample size, analyses had limited statistical power to test for significant 
change over time or pathway impact, accounting for multiple comparisons. The pathway 
analyses considered metabolite abundance measured at two points in time, as opposed to 
metabolic ‘flux’, and were observational, not causal, analyses. It is not possible to distinguish 
reduced pathway inputs from reduced pathway activity. Decreased purine metabolism, for 
example, may reflect reduced purine synthesis and/or reduced purine catabolism. Analyses 
did not consider change in cell membrane composition and function, water/nutrient trans-
porters, tissue-specific effects, or features not detectable by ALEX-CIS GCTOF mass spec-
trometry.

Potential measurement error limits interpretation of the results. MCV and percent 
weight change were the only available indices of cell volume and total body water volume in 
the Adapt Study database. Future studies should include measures of intracellular fluid vol-
ume and total body water along with measures of glycogen utilization and gluconeogenesis.  
As noted above, the present metabolomic results reflect protocol which cannot detect all 
metabolites and algorithms which may misclassify metabolites as noise.

Feature abundance was normalized by creatinine in this study to reduce intraindividual 
variation [170, 171] as well as account for known decreases in serum and urine osmolality 
[96, 97]. Normalization by creatinine can introduce error, however, if the rate of creatinine 
production is not constant. Creatinine production can differ between individuals if people 
vary in age, sex, and body size, and can differ within-individuals if there are changes in re-
nal function, metabolism or muscle mass [172, 173]. Study participants ranged in weight 
from 62.1-69.7 kg. If protein metabolism changed significantly between Week 1 and Week 
6, in relation to the induced change in hydration, then assumptions required to normalize 
the outcome of interest by creatinine may not hold. The similar pattern of results observed 
when normalizing relative to the pooled Week 1 samples suggest that this source of error 
was negligible.

Conclusion

This analysis described healthy young men before and after four weeks of sustained 
higher intake of drinking water. It juxtaposed acute and chronic effects of hypoosmotic chal-
lenge. Despite the small sample size and non-randomized design, the detailed descriptive 
data support hypothesis generation and warrant further research.

The results suggest the hypothesis that, for sedentary healthy young men, >1 L/d ad-
ditional drinking water can lead to measurable changes in hydration at the cell and whole-
body levels, if sustained for four weeks. The results suggest the hypothesis that sustained 
lower extracellular osmolality downregulates metabolic pathways that alter macronutrient 
and energy metabolism to accumulate end-products of low molecular weight, including sor-
bitol, lactose, glycerol, and free amino acids, in healthy, young adult men. The results suggest 
that chronic cell hydration acts as a metabolic switch, which alters many metabolic pathways 
in concert, at the whole-person level. The types of metabolic pathways identified as poten-
tially impacted by this analysis as well as the observed direction of potential pathway impact 
are consistent with experimental literature at the cell level. Finally, the results warrant fur-
ther work to determine if sustained higher intake of plain drinking water shifts metabolism 
away from aestivation-like and Warburg-like patterns, and limits multiple chronic disease 
risk factors, simultaneously.
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