Supplemental Material

Paracelsus 10,000: An Observational Cohort Study About the Health Status of the Population of Salzburg, Austria. Rationale, Objectives and Study Design

Vanessa Frey^a Patrick Langthaler^{a,b,c} Emanuel Raphaelis^a Susanne Ring-Dimitriou^d Ludmilla Kedenko^e Elmar Aigner^e Jennifer Martinz^a Isabella Gostner^a Arne C. Bathke^{b,c,f} Paul Sungler^g Michael Studnicka^h Elisabeth Haschke-Becherⁱ Eugen Trinka^{a,j,k} Bernhard Iglseder^I Bernhard Paulweber^e

^aDepartment of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated member of the European Reference Network EpiCARE, Salzburg, Austria, ^bDepartment of Artificial Intelligence and Human Interfaces, Paris Lodron University of Salzburg, Salzburg, Austria, cTeam Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria, ^dDepartment of Sport and Exercise Science, Paris Lodron University of Salzburg, Salzburg, Austria, "Department of Internal Medicine, St. Johanns University Hospital, Private Medical University of Salzburg, Salzburg, Austria, ^fDepartment of Statistics, University of Kentucky, Lexington, KY, USA, ^gDepartment of Surgery I, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria, hDepartment of Pulmonary Medicine, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria, Department of Laboratory Medicine, University Hospital, Paracelsus Private Medical University, Salzburg, Austria, Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria, ^kNeuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Salzburg, Austria, ^IDepartment of Geriatric Medicine, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria

1.) Quality Control

Data that was transferred from handwritten to digital form was checked for correctness if the values deviated from a minimal to maximum value (table S1).

Investigation	Min	Max	
Height (cm)	140	220	
Weight (kg)	40	180	
Abdominal circumference (cm)	50	150	
Blood pressure systolic (mm/Hg)	80	250	
Blood pressure diastolic (mm/Hg)	40	130	
Pulse pressure (mm/Hg)	25	100	
Mean Arterial Pressure (mm/Hg)	40	130	
Pulse (BPM)	30	120	
Grip Strength (kg)	10	90	
Walking Speed (s/6m)	2	6	
Carotis Intima Media Thickness (mm)	0.4	1	
Carotis Plaque mm ²		50	
Calcium Score		100	

Table S1: Investigation, minimum and maximum value that was used for quality control.

2.) Cohort Characteristics

All reference data used was obtained from Statistik Austria [1] and originates from either the quarterly population statistics for 2014 [2][3], the Microcensus 2014 [4][5] or the Austrian Health Interview Survey (ATHIS) 2014 [6][7]. Quarterly population statistics and Microcensus data were obtained via the statistical database StatCube [8]. For the ATHIS data we requested the original dataset. If not otherwise indicated, we merged data of the nine Austrian provinces to the Austrian population and accumulated all age groups to one group of 40- 69 years. In our study data set, we included only data of participants who were 40 to 69 years of age. Classification into different degrees of urbanization was conducted via the degree of urbanization (DEGURBA) criteria by Eurostat [9].

Regarding the ATHIS, we adopted the weights provided in the dataset to extrapolate to the Salzburgian and Austrian populations respectively. Microcensus data are already extrapolated and while this makes weighting unnecessary, we did not know the exact size of the relevant subgroups of the original sample. As an approximation, we multiplied the extrapolated values with 0.006, since the Microcensus included about 0.6% of the whole population as sample. This might slightly under or overestimate the sample size and thereby the width of the confidence interval, but we consider it a sufficient approximation for the purpose of the work presented here.

For categorical variables, confidence intervals in the figures are 95% Agresti-Coull confidence intervals for a binomial proportion. For continuous variables (only *mean minutes of exercise per week*) they are calculated as the mean +- 1.96 times the standard error.

For all statistical calculations and creation of figures the statistical software R^{M} (Version 4.0.2) [10] was used, in particular the package *tidyverse* [11].

<u>2.1 Age</u>

We compared the ratio of women and man within the 40 to 69 years age group of our cohort with the Austrian population and the population of the province of Salzburg. Quarterly population statistics were used for comparison.

Figure S1: Age distribution from 40 to 69 years of the Paracelsus 10,000 cohort (P10), Salzburg population and Austrian population.

Figure S2: Distribution of the Paracelsus 10,000 cohort (P10), Salzburg population and Austrian population regarding degree of urbanization.

2.2 Degree of Urbanisation

Reference data was taken from the Microcensus while we chose the DEGURBA criteria of Eurostat to classify settlement density.

We found the following distribution of urbanization degrees in the age groups; Age group 40-49: dense 37.2%, intermediate 57.1% and rural 5.7%. Age group 50-59: dense 54.1%, intermediate 40.6% and rural 5.33%. Age group 60-69: dense 56.9%, intermediate 37.5% and rural 5.6% (fig.S.2).

2.3 Migratory Background

We used reference data from the Microcensus while the definitions of migratory background were set according to the United Nations Economics Commission for Europe (UNECE) [12].

Figure S3: Migration background of the Paracelsus 10,000 cohort (P10), Salzburg population and Austrian population.

Figure S4: Distribution of the Paracelsus 10,000 cohort (P10), Salzburg population and Austrian population regarding migration background and degree of urbanization.

2.4 Attained Education

We used reference data from the Microcensus and the International Standard Classification of Education (ISCED) [13]. Criteria were chosen as metric for degree of education to which the Austrian education attainments were adjusted (Table S2).

Table S2. Assignment of possible answers in the P10 questionnaire to ISCED Level.

P10 Categories	ISCED Level
No finished education, compulsory education	ISCED 0-2
Apprenticeship, master of a trade, secondary school	ISCED 3-5
with- and without qualification for university entrance	
University, technical college	ISCED 6-8

Figure S5: Distribution of education in the Paracelsus 10,000 cohort (P10), the Salzburg population and the Austrian population. ISCED= International Standard Classification of Education.

Figure S6: Distribution of education in the Paracelsus 10,000 cohort (P10), the Salzburg population and the Austrian population. ISCED= International Standard Classification of Education. Data is split up in urbanization degrees.

2.5 Type of Employment

We used reference data from the Microcensus while only the displayed types of employment were included. Family workers, unemployed and retired participants were excluded from the reference data to provide a valid comparison. The P10 cohort however was asked for the type of employment of the last engagement, including unemployed or retired participants.

Figure S7: Distribution of employment in the Paracelsus 10,000 cohort (P10), the Salzburg population and the Austrian population.

Figure S8: Distribution of employment in the Paracelsus 10,000 cohort (P10), the Salzburg population and the Austrian population split up in different urbanization degrees.

2.6 Smoking

Reference data was taken from the ATHIS, while we considered people as smokers if they reported current cigarette use, irrespective of the amount and regularity. Ex- Smokers are people who used to smoke cigarettes on a regular basis in the past but do not currently smoke at all. Never smokers are people who never regularly smoked cigarettes.

Smoking Status (Cigarettes)

Figure S.9: Smoking habits in the Paracelsus 10,000 cohort (P10) and the Austrian population.

2.7 Physical Activity

We compared the average minutes per week of moderate to vigorous exercise not related to transportation or work of our cohort and the Austrian population. Reference data was obtained from the ATHIS dataset containing the total number of minutes spent exercising in ones' free time during a typical week. The data of the P10 cohort was extracted from two questions of the IPAQ, one on moderate and one on vigorous physical activity. We multiplied the number of days with hours/minutes per day spent with moderate or vigorous physical activity in ones' free time in the last 7 days. Data of moderate and vigorous activity were then added up. For this analysis our sample size was smaller and age range was limited to 50-59 years, since only subjects participating in the extended program answered the IPAQ.

2.8 Data on health parameters in the cohort and the sub-cohort

Table S3 displays the distribution of anthropometric data, lipid metabolism, glucose metabolism, kidney function and blood pressure in the study cohort, split up into women and men. The 5th and 95th percentile, first and third quartile and median and mean, as well as the standard deviation of data are shown for each parameter.

				Percentiles of the distribution				Average		
				5th	First		Third	95th		
		Sex	N	Perc.	Quartile	Median	Quartile	Perc.	Mean	SD
	Age (years)	Total .	9721	43	50	55	61	68	55	7
		Women	5019	43	49	54	61	68	55	7
		Men	4702	43	50	55	61	68	56	8
	Abdominal	Total	9687	73	84	93	101	116	93	13
Anthropometric	Circumference (cm)	Women	5005	71	79	87	96	111	88	13
		Men	4682	81	91	98	105	119	99	11
Data	BMI (kg/m²)	Total .	9710	20	23	26	29	35	26	5
		Women .	5015	19	22	25	28	35	26	5
		Men	4695	22	24	27	29	35	27	4
	Total Cholesterol (mg/dL)	Total	9643	150	184	209	234	276	211	39
		Women	4977	156	188	212	238	280	214	38
		Men	4666	145	180	206	231	271	207	39
	IDI-Cholesterol	Total	9602	84	116	140	165	204	141	37
	(mg/dl)	Women	4962	85	114	138	163	204	140	36
	(Men	4640	84	118	142	167	204	143	37
	UDI Chalastaral	Total	9604	38	50	61	74	96	63	18
	(mg/dl)	Women	4963	45	58	69	82	102	71	18
Lipid	(mg/ul)	Men	4641	35	45	54	64	82	55	15
Metabolism	Tutalan antidan	Total	9644	49	71	97	137	241	116	81
	(mg/dl)	Women	4977	47	66	87	120	197	101	62
	(mg/ac)	Men	4667	54	80	110	157	285	133	95
	Lipoprotein(a)	Total	8337	3	8	17	58	210	50	72
		Women	4361	3	9	18	61	213	52	73
	(mg/aL)	Men	3976	3	8	17	54	207	49	70
	Apolipoprotein B (mg/dL)	Total	9643	70	90	106	124	153	108	25
		Women	4977	69	88	103	120	149	105	25
		Men	4666	72	93	110	128	156	111	26
		Total	9298	5	5.3	5.4	5.6	6.1	5.5	0.5
	HbA1c (%)	Women	4767	5	5.2	5.4	5.6	6	5.5	0.4
		Men	4531	5	5.3	5.4	5.7	6.4	5.5	0.6
Glucose Metabolism	Glucose (mg/dL)	Total	9646	79	87	93	100	120	96	17
		Women	4977	78	85	90	97	112	92	14
		Men .	4669	82	90	96	103	128	99	19
		Total	8960	3.4	55	79	11 7	22.8	9.9	8
	Insulin (mIU/L)	Women	4656	33	5.2	7.2	10.4	19.4	89	7.2
		Men	4304	3.6	6.1	8.8	13.3	25.5	11 1	8.6
		Total	8955	0.73	1 23	1.83	2.84	6.26	2 /8	2.61
	HOMA-IR	Women	4655	0.68	1.25	1.63	2.04	4 99	2.40	2.01
		Mon.	4000	0.00	1.11	2.09	3 36	7 38	2.15	2.45
Kidney Function	Creatinine (mg/dL)	Total	96/19	0.61	0.74	0.85	0.96	1 13	0.86	0.18
		Womon .	1079	0.02	0.68	0.85	0.50	0.96	0.80	0.18
		Mon.	4570	0.39	0.00	0.70	1.04	1 10	0.70	0.12
		Total	4071	61	0.00	0.54	01	1.15	0.00	16
	eGFR (mL/min/1.73m²)	Woman	1071	60	72	01	91	109	00	10
		More .	49/1	62	71	00	90	100	01	15
Blood Pressure	Systolic (mmHg)	Tere	4058	105	/4	63	92	109	64	17
		iotal .	9691	105	118	12/	139	161	129	17
		women	5004	103	113	124	136	159	126	1/
		Men	4687	111	122	131	141	162	133	16
	Diastolic (mmHg)	lotal	9692	66	75	81	88	99	82	10
		Women	5004	65	72	/8	85	96	79	10
		Men	4688	71	79	85	91	101	85	9

Table S3: Data on anthropometry, lipid and glucose metabolism, kidney function and blood pressure of the cohort in total, in women as well as in men.

Perc.: Percentile, SD: Standard Deviation, BMI: Body Mass Index, LDL: Low-density Lipid, HDL: High-density Lipid, HbA1c: Hemoglobin A1c, HOMA-IR: Homeostasis Model Assessment for Insulin Resistance, eGFR: epidermal Growth Factor Receptor.

Literature supplementary material:

- 1 Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Website: http://www.statistik.at/web_en/statistics/index.html
- 2 Statistik Austria. (2017). *Meta information on Quarterly Population Statistics*. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from <u>http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSel</u> ectionMethod=LatestReleased&dDocName=116970
- 3 Statistik Austria. (2017). *Metainformation über die Quartalsweise Statistik des Bevölkerungsstandes*. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from <u>http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSel</u> <u>ectionMethod=LatestReleased&dDocName=029355</u>
- 4 Statistik Austria. (2020). *Meta information on Microcensus since 2004 Labour Force and Housing Survey*. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from <u>http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSel</u> ectionMethod=LatestReleased&dDocName=117000
- 5 Statistik Austria. (2020). *Metainformationen zu Mikrozensus ab 2004 Arbeitskräfte- und Wohnungserhebung*. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from <u>http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSel</u> <u>ectionMethod=LatestReleased&dDocName=008863</u>
- 6 Statistik Austria.(2016). *Meta information on Austrian Health Interview Survey* 2014. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from <u>http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSel</u> <u>ectionMethod=LatestReleased&dDocName=116989</u>
- Statistik Austria. (2016). Metainformationen zur Österreichische Gesundheitsbefragung 2014. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from http://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&RevisionSel ectionMethod=LatestReleased&dDocName=111025
- 8 Statistik-Austria. *STATcube Statistical Database*. Bundesanstalt Statistik, Austria, Guglgasse 13, 1110 Vienna. Retrieved from http://www.statistik.at/web_en/publications_services/statcube/index.html.
- Eurostat. (2018). Methodological manual on terrotorial typologies. Statistical
 Office of the European Union. Joseph Bech Building 5, rue Alphonse Weicker,
 2721 Luxembourg. Retrieved from
 https://ec.europa.eu/eurostat/documents/3859598/9507230/KS-GQ-18-008-EN N.pdf/a275fd66-b56b-4ace-8666-f39754ede66b?t=1573550953000
- 10 R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL https://www.R-project.org/.

11 Wickham H, Averick M, Bryan J, Chang W, McGowan D'Agostino L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Lin Pedersen T, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H: Welcome to the Tidyverse. Journal of Open Source Software 2019;4:1686. Retrieved from https://doi.org/10.21105/joss.01686.

- 12 UNECE. (2020). Conference of European Statisticians. Recommendations for the 2020 Censuses of Population and Housing: United Nations Economic Commission for Europe. Palais des Nations. CH - 1211 Geneva 10, Switzerland. Retrieved from <u>https://unece.org/fileadmin/DAM/stats/publications/2015/ECECES41_EN.pdf</u>.
- 13 UNESCO. (2011). International Standard Classification of Education (ISCED).